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LETIER TO THE EDITOR 

Scaling of rough surfaces in a (2 + 1)-dimensional growth 
model with nonlinear anisotropic diffusion 
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Departamento de Fisiea, Facultad de Ingenieria, Universidad Nacional de Mar del Plata. 
AV J B Just0 4302, 7600-Mar del Plata, Argentina 

Received 14 Novembei 1991 

Abstract. We present surface propenies o f  a nonlinear random deposition model taking 
into account anisotropy in diffusion, which appears in some experimental situations. We 
repoil the results of simulations made in a bidimensional substrate. We find that the surface 
width w ( t .  L)  scales as t8 with @ =0.35 for small I and the saturation value does not 
depend on L A crossover phenomenon associated with large length scales is studied. 

Aggregation and growth take place in a wide variety of physical, chemical and biological 
processes, including solidification, vapour deposition, Ruid Row in porous media and 
growth of bacterial colonies. Recently, considerable attention has been given to the 
characterization of the surface structure during growth processes due io the practical 
interest and importance in scientific and industrial applications. 

Thin films are commonly grown through molecular beam epitaxy (MBE). Incoming 
atoms move ballistically with very long mean free paths in a direction normal to the 
substrate, until they are deposited on the surface. The growth rate of the films is 
determined by their local environment and the roughness characterizing the surface. 

The properties of rough surfaces have been studied using different computational 
models. The simplest one, which resembles MBE, is the random deposition model. 
Particles simply 'rain' down onto a substrate, moving along straight line trajectories 
untii they reach the iop of ihe coiumn in which ihey were dropped, ai which point 
they stick to the deposit and become part of the aggregate. Fluctuations in the column 
heights obey a Poisson process because there is no correlation between columns. A 
modified random deposition model that accounts for the finite surface diffusion which 
exist in most realistic situations was considered later [ I]. The effect of the introduction 
of surface diffusion is the appearance of non-trivial correlations between different 
ce!umns, and i! has been shown [I! that the surface ofthe deposit exhibits a self-affine 
fractal geometry that can be described in terms of the scaling form 

w(L, h ) = L q f ( h / L ' )  (1) 

where w is the variance of the surface height, h is the mean height of the deposit, and 
L is the lateral size of the deposit. The scaling functionf(x) tend to a constant value 
when x approaches infinity and behaves as x' when x approaches zero, with p = a / z .  
w(L,  h )  behaves as L" for large h and as h' for large L. 

In 1 + 1 dimensions, with constant diffusion coefficient, numerical simulations [ 11 
show that the exponents 01 and z approach to the theoretical values predicted by 
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Edwards and Wilkinson [2] by solving a linear Langevin equation for the growing 
surface. The predicted values in d + 1 dimensions are a = (2 - d)/2, p = (2 - d) /4  and 
z = 2. For d = 1 these values are f, a and 2 respectively. The ballistic model and the 
Eden model also follow the scaling function ( I ) ,  and simulations [3] give a equal to 
f and p about f .  The same value of the P exponent is obtained when complete 
restructuring is included in the ballistic deposition model. 

A variation on the Edwards and Wilkinson model which includes the nonlinear 
effect of a driving force was introduced by Kardar, Parisi and Zhang (KPZ) [4]. The 
KPZ equation represents a universality class for interface dynamics far from equilibrium 
and predicts the exact relation a + z = 2 with a = f  and z =$, with z = a / P .  

The ability of the incoming particle to diffuse, however, depends not only on the 
existence of local minima in the height of the surface but also on the local slope of 
the aggregate [2]. This dependence is given by the angle of repose for a granular 
material. The tangent of the angle of repose is the steepest slope the material can 
sustain. In order to model the influence of the local slope of the aggregate at the 
minima a threshold for the diffusivity is introduced, and thus a random deposition 
model with nonlinear diffusion is obtained. 

The scaling properties of (1 + 1)-dimensional models with different types of non- 
linear diffusivity has been recently studied [5-7]. Results of a numerical simulation of 
a ( 1  + 1)-dimensional model with constant threshold are reported in reference [SI. The 
exponents a and P remain equal to those for linear diffusion although the zone at 
which the roughness scales with h as well as the saturation value are different and 
depend on the threshold. In reference [ 6 ]  the nonlinearity is introduced as a dependence 
of the diffusivity on the height of the deposit h and Dcc h': with positive and negative 
values of k Later, numerical simulations have confirmed this result, extending the 
study to the range where w ( L ,  h )  reaches the saturation value [7]. 

In a (d+l)-dimensional simulation of random deposition the substrate has Ld 
columns into which particles are dropped. The column in which the particle falls is 
chosen randomly and different deposition models are defined depending on how and 
where the particle sticks on the deposit. The deposited particle can diffuse on the 
surface until it finds the column with the minimum height within a finite distance from 
the column in which it was dropped. 

We study the behaviour of the surface roughness of a deposition model with 
nonlinear anisotropic diffusion on lattices in which particles are deposited from above 
onto a bidimensional substrate of sites with periodic boundary conditions. Anisotropy 
in diffusion has been reported in experimental aggregation processes, for example on 
Si(OO1) 2 x  1 surfaces [8], but has not been yet considered in simulation of deposition 
models. From a physical base, anisotropy in diffusion is due to the ability of the 
deposited particle to diffuse in one direction more easily than in the other. 

We carried out our simulation as follows: particles are allowed to fall vertically 
down until they reach the substrate or another particle in the deposit. A particle, 
randomly dropped in column (i, j )  will be allowed to diffuse to the smallest of the 
nearest-neighbour columns if the height difference Z is greater than a critical value 
Zc. The diffusion is nonlinear due to the existence of the threshold Z,.  In order to 
introduce the anisotropy in the diffusivity, two threshold values were defined, Z,x 
and Zcy. 

Results of the simulation for isotropic diffusion with Z,x = Z,y = 0 and Z,x = Z,y = 
5 are shown in figure I ,  for substrate dimensions 20x20. It can be seen that a = O  
because the roughness of the surface does not scale with the size of the substrate, and 
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Figure 1. Results of the simulation for isotropic diffusion with Z,x=Z,y=O (t) and 
Z,x = Z,y = 5 (A),  for substrate dimensions 20 X 20. 

p = 0 because the roughness reaches saturation immediately after leaving the zone of 
slope i. These results agree with previous simulations results [l]  and with theoretical 
predicted values for the a and p exponents in 2 +  1 dimensions [2]. 

Results for anisotropic diffusion, i.e. Z,y = 0 and Z,x # 0 are shown in figure 2 for 
substrate dimensions l ox  10, 20x20 and 40x40. Comparing with figure 1, it can be 
seen that a scaling zone with slope less than f appears before the saturation is reached. 
The exponent p, equal to the slope of this zone, is p = 0.356*0.002 and it was found 
that it does not depend on the size of the substrate, since the same value of p is 
obtained for different studied lengths L. The exponent a is zero, because the saturation 
value of the roughness does not depend on the lateral size of the substrate L as can 
be seen in figure 2. 
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Figure 2. Results of the simulation for anisotropic diffusion with Z,y=O and Z,x= 10, 
for substrate dimensions l o x  I O  (t), 20x20 (A)  and 40x40 (0). 
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Figure 3. Results of the simulation for different degrees of anisotropy for substrate 
dimensions 20x20. (+): Z , x = S ,  Z , y = O ;  (A):  Z , x =  IO, Z , y = O :  (0): Z , x =  IS, Z c y  =O; 
(0): Z , x = 5 0 ,  Z , y = O .  

We also studied the dependence of p on the degree of anisotropy. The results are 
displayed in figure 3 for Z,x = 5,Zcx = 15 and Z,x = 50. The exponent is p independent 
of Z,x since the same slope is obtained for different anisotropies. However, the 
saturation value of the roughness depends on the magnitude of anisotropy. 

The surface width, then, behaves as hP for he< h < h,, as h"' for h < h,, and does 
not scale with L for h > h,. As can be seen in figure 3, h, does not depend on the 
degree of anisotropy. This indicates that the crossover phenomenon associated with 
h, reported for 1 + 1 dimensions [9 ]  does not appear in 2 +  1 dimensions. Instead, we 
analysed a crossover phenomenon associated with h,. For h >> L the slope of the 
roughness changes with Z,x from 0 to p as Zcx increases. The values of h,, from figure 
3, versus Z,x are plotted in figure 4, and it can be seen that h, scales as h,-  ( 1/Zcx)-''', 
where 4 = 0.59. This value is close to the slope reported in [9 ]  for the crossover length 
h, in 1 + 1 dimensions. 

For the KPZ continuous model d = 2  (in d + 1 dimensions) is a critical dimension 
in which p = 1/3 and a = 1/2. The same values for a and p are obtained for the Eden 
model [3] and were argued to be superuniversal (independent of d )  [4]. Comparing 
the exponent p and LI for anisotropic diffusion in d = 2 we note that the first one is 
close to the KPZ and Eden p, although our simulations indicate that a = 0. 

In conclusion, we have studied a surface growth model with nonlinear diffusion 
in a (2+ 1)-dimensional lattice, which represents experimental aggregation processes. 
We found that for isotropic diffusion, the width of the surface scales as the Edwards 
and Wilkinson model predicts, i.e. the exponents a and p of the scaling function are 
zero. If anisotropy in diffusivity is taken into account, non-trivial scaling with the 
surface height is obtained. A p exponent equal to 0.35 appears and this exponent 
depends neither on the amount of anisotropy nor on the size of the substrate. The a 
exponent remains zero. A crossover phenomenon associated with large length scales 
was found. Although the phenomenon is different from that in 1 + 1 dimensions, the 
crossover length scales with a similar exponent. 

To our knowledge, continuous models for anisotropic diffusion are not available 
at present, so the results reported here must wait for comparison. 
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Figure 4. The log-log plot of h, versus Z,x. The slope of the straight line through the 
points is 114 = 1.69. 

The authors would like to thank the referee for suggestions about the crossover 
phenomenon and Professor H Martin for useful discussions. 
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